Subtelomeres constitute a safeguard for gene expression and chromosome homeostasis
نویسندگان
چکیده
The subtelomere, a telomere-adjacent chromosomal domain, contains species-specific homologous DNA sequences, in addition to various genes. However, the functions of subtelomeres, particularly subtelomeric homologous (SH) sequences, remain elusive. Here, we report the first comprehensive analyses of the cellular functions of SH sequences in the fission yeast, Schizosaccharomyces pombe. Complete removal of SH sequences from the genome revealed that they are dispensable for mitosis, meiosis and telomere length control. However, when telomeres are lost, SH sequences prevent deleterious inter-chromosomal end fusion by facilitating intra-chromosomal circularization. Surprisingly, SH-deleted cells sometimes survive telomere loss through inter-chromosomal end fusions via homologous loci such as LTRs, accompanied by centromere inactivation of either chromosome. Moreover, SH sequences function as a buffer region against the spreading of subtelomeric heterochromatin into the neighboring gene-rich regions. Furthermore, we found a nucleosome-free region at the subtelomeric border, which may be a second barrier that blocks heterochromatin spreading into the subtelomere-adjacent euchromatin. Thus, our results demonstrate multiple defense functions of subtelomeres in chromosome homeostasis and gene expression.
منابع مشابه
Chromosome arm length and nuclear constraints determine the dynamic relationship of yeast subtelomeres.
Physical interactions between distinct chromosomal genomic loci are important for genomic functions including recombination and gene expression, but the mechanisms by which these interactions occur remain obscure. Using telomeric association as a model system, we analyzed here the in vivo organization of chromosome ends of haploid yeast cells during interphase. We separately labeled most of the...
متن کاملShugoshin forms a specialized chromatin domain at subtelomeres that regulates transcription and replication timing.
A chromosome is composed of structurally and functionally distinct domains. However, the molecular mechanisms underlying the formation of chromatin structure and the function of subtelomeres, the telomere-adjacent regions, remain obscure. Here we report the roles of the conserved centromeric protein Shugoshin 2 (Sgo2) in defining chromatin structure and functions of the subtelomeres in the fiss...
متن کاملThe FUN30 Chromatin Remodeler, Fft3, Protects Centromeric and Subtelomeric Domains from Euchromatin Formation
The chromosomes of eukaryotes are organized into structurally and functionally discrete domains. This implies the presence of insulator elements that separate adjacent domains, allowing them to maintain different chromatin structures. We show that the Fun30 chromatin remodeler, Fft3, is essential for maintaining a proper chromatin structure at centromeres and subtelomeres. Fft3 is localized to ...
متن کاملX Chromosome Inactivation in Opioid Addicted Women
Introduction: X chromosome inactivation (XCI) is a process during which one of the two X chromosomes in female human is silenced leading to equal gene expression with males who have only one X chromosome. Here we have investigated XCI ratio in females with opioid addiction to see whether XCI skewness in women could be a risk factor for opioid addiction. Methods: 30 adult females meeting DS...
متن کاملP-195: Analysis of Expression Level of Tex11 Gene in Obstructive and Non-Obstructive Azoospermic Men Referred to Royan Institute
Background: About 15% of couples worldwide suffer from infertility problem that half of these cases are related to male infertility. Spermatogenesis is a cumulative process and thousands of genes are involved in it. Change in one of these genes or their products can cause male infertility. Tex11 is a germ cell specific gene that is located on the X chromosome (Xq13.1 region). This gene was iden...
متن کامل